Home                                                                                                                                                                  Back


M.Sc. PART-I  PHYSICS
[EFFECTIVE FROM JUNE, 2004]

Structure of Syllabus :

1.    There will be Three Theory Papers Number I, II & III each of 100 Marks.

2.    There Lecture-periods of 1 hour, each per paper per week are to be assigned to complete the syllabus  

       of relevant theory paper.

3.    There will be Three Practicals of Three hours per week. Each Practical carrier 50 Marks and number of 
       student in a single batch should not exceed 10 (Ten).

4.    University Examination Pattern : 

 

       Theory        Duration        Marks

       Paper-I        3 Hours            100

       Paper-II       3 Hours            100 

       Paper-III      3 Hours            100

                                            --------

            Total Marks (Theory)       300

                                            -------- 

 

       Practicals         Duration        Marks

       Experiment-I        3 Hours         50

       Experiment-II       3 Hours         50

       Experiment-III      3 Hours         50

                                                --------

            Total Marks (Practicals)       150

                                                -------- 

 

Note :    (1)    Syllabus of each Question Paper has been divided into FIVE UNITS.

            (2)    One question must be set from each unit with internal option only.

            (3)    As far as possible, proportionate weightage of marks should be given to various 

                    sub-units/topics from each unit.

            (4)    Each question will have normally 3 subquestions (a), (b), & (c) detailed as under :

                    (a)    Theory question

                    (b)    Theory question / Application          16 Marks  

                    (c)    Problem / Example / Application        04 Marks                        

                                                                             ----------

                                                                Total       20 Marks  


PAPER - I [Mathematical Methods, Quantum Mechanics and Computer Programming]

 

 

MATHEMATICAL METHODS

 

Unit - 1    (20 Lecture-Periods : 20 Marks)

(a)    Function of a Complex Variable :

        (1) Analytic functions (2) Contour Integrals (3) Laurent series (4) Residue theorem (5) Methods  

        of Finding Residues (6) Evaluation of Definite Integrals by use of the Residue theorem 

        (7) The point of Infinity, Residue of Infinity (8) Mapping (9) Some Applications of conformal mapping  

(b)    Integral Transforms :

        (1) Introduction (1) Laplace Transforms (2) Solution of Differential Equation by Laplace Transforms (3)

        Fourier Transforms (4) Convolution : Parseval's Theorem (5) Inverse Laplace Transform (Bromwich 

        Integral) (6) Dirac Delta function (7).

        Basic reference : 

        Mathematical methods in Physics Sciences by M.L. Boas 2nd edition, John Wiley & Sons,1999. 

        Chapter 14 and 15. For article b(7) also see G.B. Arfken and J.H. Weber.

(c)    Non-linear Differential Equations and Boundary Value Problems :

        Boundary value problems in Physics (4.1) Boundary value problems and Series solution (4.2) Examples   

        of  boundary value problems (exclude example 4 & similarly done in electrodynamics) (4.3) Eigen value 

        eigen function & sturm-Liouville problem (4.4) Hermition Operators Their eigen value and eigen 

        function (4.5)

        Basic reference : 

        Mathematical physics by P.K. Chattopadhyay, 1990 New age international (P) Ltd., New Delhi, 

        Chapter 4 (Reprint 2001).

 

 

Unit - 2    (20 Lecture-Periods : 20 Marks)

(a)    Tensor analysis :             

        Introduction, Definition, Contra variant vector, Covariant vector, Definition of Tensors of rank two, 

        addition & subtraction of tensor, summation convention, symmetry - antisymmetry of second rank 

        tensor  (2.6) Contraction, Direct product (2.7) Quotient rule (2.8) Pseudo tensors Dual tensor 

        Levi-civita symbol, irrducible tensor (2.9), Non cartesian tensors, Matro tensor christoffel symbols, 

        christoffel symbols asdervatives of matric tensor, convariant derivative (2.10) Tensor derivative 

        operators (2.11).

          Basic reference : 

        Mathematical Methods for Physicist by G.B. Afrken & H.J. Weber 5th Edition 2001 Harcot (India Pvt. 

        Ltd.)

(b)    Some differential equations :

        System of linear first order differential equations (3.6) Non-linear Differential Equations (3.7)

        Basic reference : 

        Mathematical physics by P.K. Chattopadhyay, 1990, New age international (P) Ltd., New Delhi. 

        Chapter 3 (Reprint 2001).

(c)    Group Theory :

        Group, subgroups, classes (8.1) Invariant, subgroups, factor groups (8.2) Homomorphism & 

        Isomorphism (8.3) Group representation (8.4) Reducible & Irreducible representations (8.5) Schur's 

        lemma, Orthogonality theorem (8.6) Character of representation, Character table (8.7) Decomposing a 

        reducible  representation into Irreducible ones (8.8) Construction of representations (8.9) Lie groups & 

        Lie algebra (8.11) The Three dimensional rotation groups SO(3) (8.12) The special unitary groups    

        SU(2) and SU(3) (8.13) The homomorphism between SU(2) & SU(3) (8.13a) Some application of group 

        theory in physics  (8.14) (application 4 classification of elementary particles).              

          Basic reference : 

        Mathematical physics by P.K. Chattopadhayay, 1990, New age international (P) Ltd., New Delhi. 

        Chapter 8 (Reprint 2001).

 

 

QUANTUM MECHANICS 

 

Unit- 3    (20 Lecture-Periods : 20 Marks)

(a)    Some exactly soluble Three-dimensional problem in quantum mechanics :

        An isotropic oscillator (4.20) The isotropic oscillator (4.21) Normal modes of a coupled system of 

        particle (4.22)

(b)    Approximation methods for stationary states :

        Perturbation theory for Discrete level (5.1) Equation in various orders of perturbation theory (5.2) Non

        degenerate case (5.3) The degenerated caseremovel of degeneracy (5.4) The effect of electrical field

        on energy level of an atom (Stark effect) (5.5) Two electron atoms; The variation method (5.6) Upper

        bound on ground state energy (5.7) Applications to excited state (5.8) Trial function; Linear in 

        variation  parameters (5.9) Hydrogen molecule (5.10) Exchange interaction (5.11) The one dimensional 

        Schodinger (inclusive all cases & discussion relevant to perturbation theory / WKB method) (5.12) The 

        Bohr Sommefield quantum condition (5.13) The WKB solution of radial wave equation (5.14).

(c)    Scattering theory :

        The scattering cross-section, General considerations (6.1) Kinematics of scattering process; 

        Differential   and Total cross-sections (6.2) Wave mechanical picture of scattering - The scattering 

        amplitude (6.3) Green functions : Formal expression for scattering Amplitude, The Born and Eikonal 

        Approximations (6.4) The Born Approximation (6.5) The validity of the born Approximation (6.6) The 

        Born series (6.7) The Eikonal Approximation (6.8).

 

 

Unit - 4    (20 Lecture-Periods : 20 Marks)

(a)    Partial Wave Analysis :

        Asymptotic Behavior of partial waves : phase shift (6.8) The scattering Amplitude in terms of 

        phaseshifts (6.9) The Differential and Total cross-sections, Optical theorem (6.10) Phace shifts : 

        relation to the potential (6.11) Potentials of finite range (6.12) Low energy scattering (6.13) Exactly 

        soluble problems (6.14) Scattering by a square well (6.15) scattering by a hard sphere (6.16) 

        scattering by a coulumb potential mutual scattering of two particles (6.17) Reduction of the two 

        body problem : The centre of mass frame (6.17) Transformation from centre of mass to Laboratory 

        frame of reference (6.18) collisions between identical particles (6.19).

(b)    Operator methods in Quantum mechanics :

        Representation, Transformations and Symmetries : quantum states, State vector and wave functions 

        (7.1) Hilbert space of state vectors : Dirac notatio (7.2) Dynamical variable and Linear operators (7.3)

        Representations (7.4) continuous basis : The Schrodinger equation (7.6) Degeneracy, labelling by 
        commuting observables (7.7) Change of basis; Unitary transformations (7.8) Unitary transformation 

        induced by change of coordinate system : Translation (7.8) Unitary transformations induced by 

        Rotation  of coordinate system (7.9) Algebra of rotation Generators (7.10) Transformation of 

        Dynamical variables (7.11) Symmetries and conservation laws Evolution with time (7.12) The 

        Schrodinger equation : General solution (9.1) Propagator (9.2) Relation of retarded propagator to the 

        Green's function of the Time - independent Schrodinger equation (9.3).

        Basic reference for UNIT III & IV

        A textbook of Quantum mechanics by P.M. Mathews and K. Venkatesan 1976 THM, New Delhi.

 

 

C-LANGUAGE 

 

Unit - 5    (20 Lecture-Periods : 20 Marks)

(a)    Overview of C:

        Introduction (1.1) Importance of C (1.2) Sample C programme (1.3) Basic structure of C programmes 

        (1.4) programming style (1.5) Executing a "C" Programme (1.6).

(b)    Constants, Variable and Data types :

        Introduction (2.1) Character set (2.2) C tokens (2.3) Keywords and identifiers (2.4) constants (2.5)

        variables (2.6) Data types (2.7) Declaration of variables (2.8) Assiging values to variables (2.9) 

        defining symbolic constants (Additional) : case studies (2.10).

(c)    Operators and Expressions :

        Introduction (3.1) Arithmetic operators (3.2) Relational operators (3.3) Logical operators (3.4) 

        assignment operators (3.5) Increment and Decrement operators (3.6) Conditional operators (3.7) 

        Bitwise operators (3.8) special operators (3.9) Arithmetic expressions (3.10) Evaluation of expressions 

 @