Home                                                                                                                                                     Back


MATHEMATICS
Paper - VI (Abstract Algebra)  General - Principal - Subsidiary

    

    Unit - 1.

             Group, order of a group, finite and infinite groups, sub-groups, Right and Left Cosets of sub-group, Lagrange's theorem and its decuctions order of an element index of a sub-group in group. Normal Sub-group and quotient groups. Homomophisms, Isomorphisms, and.

    Unit - 2.

             Automorphisms; Kernal of a homomorphism. Fundamental theorem of homomorphism Cyclic group. Permutation group- Cycle and transposition even and old permutation.

    Unit - 3.

            Definition and example of rings. Properties of rings .Sub-rings. Zero divisors Indegral Domain. Characteristics or ring Homomorphism of rings, Quotient ring.

    Unit - 4.

            Ideals Principal ideal and principal ideal ring, Maximal and prime ideal and corresponding Quotient rings. Quotient field of an intergral domain. Polynomials, degree of- polymomials; F(X)

    Unit - 5.    

             As an intergral domain, Division algouthem for polymomials, greatest Uommon divisor  of two polynomials reducible and irredutible polynomials, unique theorem for polynomials unique factorisation theorem for polynomials roots of and degree polyno- mials equation.

 

    Note :-    All units Carry Equal Marks.

 

    Books Recommended :

               Name of Book                                   Author                    Publisher.

        1.    Algebraic Structures                :    Dr. A.R. Singal,        REstogi & Co. 1985.
       2.    Elements of Modern Algebra      :    B.S. Vatssa              I.N. Herstein
       3.    Topics in Algebra                    :    Fathar Wols.            Willey-Eastern 1983.
       4.    Modern Algebra (2nd Ed.)         :    Surjitsingh                Vikas Publihouse
                                                                         Quzi, Zameruddin     Ltd. (2nd Ed. 1975)
       5.    University Algebra                   :    N.S. Gopal Krishna   


Paper - VII   Analysis - I  

    1.    Number Systems :
           The real field to be developed by ordered set approach. Equivalence of this approach and Dedikind's approach. Extended real number system. The complex number system Euclidean spaces.
    2.    Basic Topology :
           Finite, countable and uncountable sets Metric spaces, Neighbour hoods in metric spaces  Limit points of a set, Open, closed bounded, Compact, connected and  convex sub-sets of metric spaces.
  3.      Sequences and Series :
           Convergent Sequences, Sub-sequences Cauchy Sequences, upper and lower limits Special Sequences and Series Series of non-nagative terms The number Root and ratio tests.
    4.    Power Series with real (Complex) terms interval (circle) of convergence and radius of a power series Summation by parts absolute convergence. Addition and multiplication of series Rearrangements.
    5.    Limits and continuity :
           Limits and continuity for functions from a metric space into another metric space continuity of a composite function, structureal properties of continuous function from a metric space into Rk. continuity and compactness. Continuity and connectedness Discontinuities Monotonity function. infinite limits and limits at infinity. Differentiation : Derivatives of a real function continuity and differentiability structural properties of  the class of differentiable function, Mean value theorems. Continuity of derivatives L'Hospital's Rules Derivatives of higher order Taylor's theorems Differentiation of vector values function on (a,b). The course is roughly covered chapters 1,2,3,4,5 of the book entitled "Principles of Mathematical Analysis" by walter Rudin McGraw Hill 
           (International student Edition)  3rd Edition.

    Note :  All  units carry equal marks.


Paper - VIII Analysis - II (Principal & Subsidiary) 

    

    1.    Riemann - Stieltje's integral :
         Riemann integral and stieltje's integral Properties of Reimann and stieltje's integrals Intergration and differentitation integration of Vector values functions Rectifiable curves.
    2.    Sequences and series of function :
         Sequences of function. Limit of a sequence of function Uniform convergence. Tests for uniform convergence, uniform convergence and contindity . Uniform convergence  and differentiation.
    3.    Some Special function :
         Power series, the expontial function Logarithmic function Trigonometric function.
    4.    Functions of several variables :
         Linear transformation. Linear oprators on a finite dimensional vector space. Invertible linear operators, Differentiation partial derivatives Derivatives of Higher order- Diffrentiation of integral.
    5.    Complex valued function on Sub-sets of a complex plane :
         Limit diffrentiatiability and analyticity of complex function Cauchy-Riemann equations Harmonic function. Conjugate harmonic function Replace analyticity of elementary functions.
           (1)    The course is roughly covered by chapters 7 (omit 7.28 to 7.33) Chapters 8 (omit 8.8 to 8.22  Chapters 9 (omit 9.9 and 9.24 to 9.38) of the book  Entitled.
           (2)    "Principles of Mathematical Analysis" by walter Rudin, McGraw-Hill (International student Edition)- 3rd Edition and Chapter 2,8 of the book entitled
           (3)    Complex variables and applications by R.V. Churchil.

    Book Recommended :

            Name of the Book                                               Author                Publisher.

    1.    Principles of Mathematical Analysis    :    T.M. Apostol
    2.    Pure Mathematics                          :    G.H. Hardy          Cambridge Uni. Press   
    3.    Advance calculus                           :    H.K.Nicherson     D.C. Spener & East-
                                                                                                      West (1968) N.E.
    4.    Principles of real analysis                 :    S.C. Malik            Viley Easterin Limited
                                                                                                      New Delhi 1982.
    5.    Methods of Real analysis                  :    R.R. Goldberg      Oxford publication
                                                                                                      Bombay (1979)

    Note :    All units carry equal marks.

 


Paper - IX  Principles of Mechanics

 

    Unit - 1.    Method of plane Statics :
                Equilibrium of a particle, Equilibrium of a system of particles. Work and potential energy.
    Unit - 2.    Application of plane statics :
                Mass centers and centers of gravity friction, flexible cables.
    Unit - 3    Plane Kinematics :
               Kinematics of particles. Motion of rigid body parallel to a fixed plane.
   Unit - 4    Motion of Rigid Body :
               Moment of Inertia, Kinetic energy and angular moment Rotation of a rigid body about a fixed axis, general motion of a rigid body paralled to a fixed plane stability of equilibrium.
    Unit - 5.   Plane Impulsive Motion :
               General Theory of plane impulsive motion collisions.

    Note :    All units carry equal marks.

                  The course is roughly covered by :Principles of Mechanics" by Synge and 
                  Griffith McGraw-Hill (3rd Edition) 1959.


Paper - IX Operations Research

 

    Unit - 1.    Linear Programming :
                General LP problem. Basic feasible solutions Simplex method Degeneracy revised Simplex method Duality Sensitivity analysis and parametric LP. Integer Programming.
    Unit - 2.    Transportation Problem :
           Triantular basis. Finding a basic feasible solution Testing for optimality changing the basis Degeneracy unbalanced problem, transportation with transshipment Caterer problem. Assignment problem.
    Unit - 3.    Flow and pontential in Networks :
                Graphs Minimum path problem Spenning tree of minimum lenght. Problem of minimum potentia differences Scheduling of sequential activities Maximum flow problem and duality in it.
    Unit - 4.    Nonlinear Convex Programming :
                Legragian Function saddle point Kuhntucker Theory Quadratic Programming.
                    Dyamic Programming :    Minimum path problem Singal additive constaint with additively separable return, single additive constraint with multiplicative separable.
    Unit - 5.    Theory of Games :
               Matrix (retangular games) minimal theorem saddle point strategies and pay - off theorem of matrix games, Graphical solution notion of dominance. Rectangular game as an LP Problem.

    Note :    All units carry equal Marks.

                 The syllabus is roughly covered by "Optimization Methods in O.R. and system Analysis" by K.V.Mital (Wiley Eastern) Chapter 3,4,5,6,7 and 9.


Paper - X Discrete Mathematics

 

    (a)    Lattices and Boolean Algebra :

    Unit - 1.    Lattices :
                Partially ordered sets (POSETS), Hasse diagram, Lattices as posets Lattices as algebraic systems The equivalence of two definitions of a lattice Direct product of two lattices Order isomorphism of two posets. Isomorphic lattices Completelattices Distributive lattices complemented lattices. Boolean algebra. Examples of Boolean algebra. Boolean algebra of logic circuits and switches. Direct product of two Boolean algebra. Homomorphism.

    Unit - 2.    Atoms of a Boolean Algebra :
               A (x) (the set of all the atoms of a Boolean algebra less than or equal to x) and its properties Isomorphism of a finite Boolean algebra and (P(S),C). Order of a finite Boolean algebra as 2". Boolean function / expressions. Minterms, Maxterms, representation of a Boolean expression as a sum of products canonical form and as product of sum canonocal form Karnaugh map. Minimization of a Boolean expression by Cube array method and by Karnaugh method.

  Unit - 3.    Graph Theory :
               Graphs, Basic Definition Undirected Directed, Mixed Weighted graphs incidence and degree Isomorphism. subgraphs , Walks Paths Circuits Connected disconnected graph Strong weak and unilateral components Euler graphs operation on graphs Hamiltonion paths Trees Binary and M-ary tress To. count trees spanning trees.

    Unit - 4.    

                  Cut sets Connectivity and speparability 1- isomorphism, 2- isomorphism planar graphs and their different representations.  
                  Detection of planarity Geometric and combinatorial duals vector space associate with graph circuit and cut-set subspces Orthogonal and spaces.

    Unit - 5.    

             Incidence matrix adjacency matrix of a path matrix and their relationship. Chromatic number, chromatic partitioning, coverings. Acylic digraphs and Decylization.

    Reference Book :

    1.    "Discrete Mathematical Structure with Application to computer Science" by Trembley I.P and Manohar R.
    2.    "Discrete Mathematics structure with Application to computer science" 
            by Trenbley R.S. Hamming and E.A. Feigebaum.
    3.    "Discrete Mathematics structure with application to computer science" by B. Kolman and R.C. Bubsy.
    4.    "Graph Theory with a application to Engg. And computer science" by Narshigh Deo
    5.    "Graph Theory" by Harary F.
    6.    "Graph theory and its Application" by Harris.
    7.    "Boolean Algebra abd its Application" by Whitestitt J.E.
    8.    "Boolean Algebra-Abstract and Concrere" by A.P. Bowran.


Paper - X  TOPOLOGY

 

    Unit - 1.    Metric Spaces :
               Definition of a metric space and example, continuous function open and closed spheres and their properties, neighbourhood of a point and its properties open sets and its properties limit of a sequence, definition of closed sets and its properties.

    Unit - 2    Metric Space (cont.) and Topological Spaces :
               Product spaces, subspaces, equivalence of metric spaces, definition of a topological space equivalence of metric spaces, definition of a topological space metrizable space and neighbourhood of a point.

    Unit - 3.    Topological Space : (Cont.)
                Hausdorff space, definition of closure interior boundary of a   set and their properties functions continuity and Homeorplisms, subspace topology and product topology
    Unit - 4.    Connectedness :.   
                Definitions of connected and disconected spaces connectedness on the real line and applications of connectedness, components and local connectedness Locally - connected at a point. 

    Unit - 5.    Compactness :
                Definition of a compact space subsets of a reline product of compact spaces compact  metric spaces Bolzano Weierstrass property.   

    Note :    The course is roughly covered by.

            Chapter : 2,3    :    (Omit : Nbhd. space Definition. 3.4 page 91 to end of thm 3.8 page 94 Omit : Closure -space-Defi.. (4.8 page 98 to end of 4.13 page 99).
            Chapter : 4       :    (Omit thm. 4.6 page 128 to end of thm 4.8 page 133 Omit Artical-6,7,8 page 138 up to page 161)
            Chapter : 5       :    (Omit Defn. 6.1 page 187 to end of thm 6.5 page 189 omit article-7 193 up to page 210) of the book entitled "Introduction to Topology" by B. Mendelson CBS publication 1983.

 

    Reference Book :

    1.    "Introduction to Topology"            :    B.M. J. Mansfield (CBCS Pub.)
    2.    "Introduction to Topology and       :    By G.F. Simmons (McGraw-Hill) Modern Analysis"
    3.    "Topology - A First course"           :    by J.R. Munkres (Prentice-Hal of India).


: IÛ